Unique homogeneity, I

Jan van Mill

VU University Amsterdam and Technical University Delft

Hejnice 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A topological space X is called *(topologically) homogeneous* if for all $x, y \in X$ there is a homeomorphism $f: X \to X$ such that f(x) = y.

A topological space X is called *uniquely homogeneous* (abbreviated UH) if for all $x, y \in X$ there is a *unique* homeomorphism $f: X \to X$ such that f(x) = y.

 $X = \{0\}$ and $X = \{0, 1\}$ are UH.

Burgess, 1955. *Is there a UH metric continuum with more than one point?*

Ungar, 1975, NO for finite dimensional continua. Barit and Renaud, 1978, NO.

Theorem

If X is locally compact, metric and UH, then $|X| \leq 2$.

Eric van Douwen, 1979, Baton Rouge.

If X is UH, and $x,y\in X,$ let f_y^x be the unique homeomorphism taking x onto y.

Fix an element $e \in X$. We denote f_x^e by f_x for brevity. Define a binary operation '·' on X by

$$x \cdot y = f_x(y).$$

This is a group operation.

$$x^{-1} = f_x^{-1}(e).$$
 $x \cdot x^{-1} = f_x(x^{-1}) = f_x(f_x^{-1}(e)) = e.$

$$(f_x f_y)(e) = f_x(f_y(e)) = f_x(y) = x \cdot y = f_{x \cdot y}(e).$$
 $f_{x \cdot y} = f_x \circ f_y.$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

$$x(yz) = xf_y(z) = f_x(f_y(z)) = (f_xf_y)(z) (xy)z = f_{xy}(z) = (f_xf_y)(z)$$

Etc.

He tried to prove that this operation gives X the structure of a topological group.

Not such a bad idea since all left-translations of X are homeomorhisms.

$$x \mapsto a \cdot x$$
 is equal to f_a

So every UH space has the structure of a left-topological group

Theorem

- (vM, 1983) There is a uniquely homogeneous separable metric Baire space of size c which is a topological group.
- (vM, 1984) There is a uniquely homogeneous separable metric Baire space of size c which does not admit the structure of a topological group.

After these results, nothing happened with unique homogeneity, until 2012 by the work of Arhangelskii and vM

Question

- Does there exist a Polish UH space? It cannot be locally compact
- Is there a compact uniquely homogeneous space? It cannot be metrizable and it cannot be a topological group (W. Rudin)
- O there exist uniquely homogeneous spaces of arbitrarily large weight?

Theorem

- Every UH space of size greater than 2 is connected
- In the second second

Proof of the Barit and Renaud Theorem that no locally compact space of size greater than 2 is UH.

We only do the compact case.

Theorem

If G is an analytic group acting transitively on a second category separable metric space X, then for every $x \in X$, the evaluation mapping

$$G \to X \qquad g \mapsto gx$$

is a continuous and open surjection.

This is the so-called *Effros Theorem*. It has some very interesting consequences.

Banach Open Mapping Theorem, in a strengthened form.

Theorem

If G and H are topological groups, G analytic and H Polish, and $\varphi: G \to H$ is a continuous surjective homomorphism, then φ is open.

Let e denote the neutral element of H.

$$G \times H \to H$$
 $(g,h) \mapsto \varphi(g) \cdot h.$

Evaluate this action at the point e:

$$g \mapsto \varphi(g) \cdot e = \varphi(g).$$

Hence this evaluation is φ , hence φ is open.

Ungar's Theorem from 1975.

For a space X we let H(X) denote its group of homeomorphisms.

Theorem

If X is a homogeneous compact metric space, then $\forall \varepsilon > 0 \exists \delta > 0$ such that $\forall x, y \in X \ d(x, y) < \delta \ \exists h \in H(X) \ h(x) = y$ and hmoves no point more than ε .

Fix $\varepsilon > 0$, and let V denote the open neighborhood of the neutral element e of H(X) consisting of those homeomorphisms that move every point less than $1/2\varepsilon$. Then Vx is open in X for every $x \in X$ by Effros. Now let δ be a Lebesgue number for the open cover $\{Vx : x \in X\}$ of X.

Proof of the Barit and Renaud Theorem from 1978

Fix $x \in X$. The evaluation at $x \gamma_x : h \mapsto hx$ is an open, continuous surjection by Effros. It is also injective by unique homogeneity:

$$hx = \gamma_x(h) = \gamma_x(g) = gx$$

gives us that $(g^{-1}h)x = x$, i.e., $g^{-1}h = e$. Hence H(X) and Xare homeomorphic. This means that X is a compact topological group. Consider the homeomorphism $x \mapsto x^{-1}$. This function fixes e, hence is the identity. So $x = x^{-1}$ for every $x \in X$. Hence X is a Boolean topological group, hence Abelian. Structure theorems of compact Abelian groups then give that X is homeomorphic to $\{0,1\}^{\kappa}$ for some $\kappa \leq \omega$. But this is not uniquely homogeneous for $\kappa \geq 2$.